Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 393: 130162, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065516

RESUMO

Biosynthesis of D-arabitol, a high value-added platform chemical, from renewable carbon sources provides a sustainable and eco-friendly alternative to the chemical industry. Here, a robust brewing yeast, Zygosaccharomyces rouxii, capable of naturally producing D-arabitol was rewired through genome sequencing-based metabolic engineering. The recombinant Z. rouxii obtained by reinforcing the native D-xylulose pathway, improving reductive power of the rate-limiting step, and inhibiting the shunt pathway, produced 73.61% higher D-arabitol than the parent strain. Subsequently, optimization of the fermentation medium composition for the engineered strain provided 137.36 g/L D-arabitol, with a productivity of 0.64 g/L/h in a fed-batch experiment. Finally, the downstream separation of D-arabitol from the complex fermentation broth using an ethanol precipitation method provided a purity of 96.53%. This study highlights the importance of D-xylulose pathway modification in D-arabitol biosynthesis, and pave a complete and efficient way for the sustainable manufacturing of this value-added compound from biosynthesis to preparation.


Assuntos
Saccharomycetales , Xilulose , Zygosaccharomyces , Xilulose/metabolismo , Glucose/metabolismo , Álcoois Açúcares/metabolismo , Fermentação , Zygosaccharomyces/genética , Zygosaccharomyces/metabolismo
2.
Prep Biochem Biotechnol ; 52(5): 590-597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34528864

RESUMO

A novel arabitol dehydrogenase (ArDH) gene was cloned from a bacterium named Aspergillus nidulans and expressed heterologously in Escherichia coli. The purified ArDH exhibited the maximal activity in pH 9.5 Tris-HCl buffer at 40 °C, showed Km and Vmax of 1.2 mg/mL and 9.1 U/mg, respectively. The ArDH was used to produce the L-xylulose and coupled with the NADH oxidase (Nox) for the regeneration of NAD+. In further optimization, a high conversion of 84.6% in 8 hours was achieved under the optimal conditions: 20 mM of xylitol, 100 µM NAD+ in pH 9.0 Tris-HCl buffer at 30 °C. The results indicated the coupling system with cofactor regeneration provides a promising approach for L-xylulose production from xylitol.


Assuntos
D-Xilulose Redutase , Xilulose , Clonagem Molecular , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Complexos Multienzimáticos , NAD/metabolismo , NADH NADPH Oxirredutases , Álcoois Açúcares , Xilitol , Xilulose/química , Xilulose/metabolismo
3.
Am J Med Genet A ; 185(11): 3350-3358, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34165242

RESUMO

From Sir Archibald Garrod's initial description of the tetrad of albinism, alkaptonuria, cystinuria, and pentosuria to today, the field of medicine dedicated to inborn errors of metabolism has evolved from disease identification and mechanistic discovery to the development of therapies designed to subvert biochemical defects. In this review, we highlight major milestones in the treatment and diagnosis of inborn errors of metabolism, starting with dietary therapy for phenylketonuria in the 1950s and 1960s, and ending with current approaches in genetic manipulation.


Assuntos
Albinismo/terapia , Alcaptonúria/terapia , Cistinúria/terapia , Erros Inatos do Metabolismo/terapia , Albinismo/genética , Albinismo/metabolismo , Albinismo/patologia , Alcaptonúria/genética , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/patologia , Erros Inatos do Metabolismo dos Carboidratos/terapia , Cistinúria/genética , Cistinúria/metabolismo , Cistinúria/patologia , Humanos , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Fenilcetonúrias/terapia , Desidrogenase do Álcool de Açúcar/deficiência , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Xilulose/genética , Xilulose/metabolismo
4.
Food Funct ; 12(9): 3931-3938, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33977954

RESUMO

The rare sugar d-allulose is a C-3 epimer of d-fructose and is known to have several health benefits such as anti-obesity and anti-diabetic effects through the alteration of enzymatic and genetic expressions in each organ. Most of the ingested d-allulose is absorbed in the small intestine and then rapidly excreted in the urine. As d-allulose was reported to be present in the liver before it is excreted, d-allulose may modulate some hepatic metabolites including glucose and lipid metabolism. Therefore, we investigated the hepatic metabolomics profile in rats after feeding d-allulose to study the overall alteration of hepatic metabolism. Wistar rats were fed an AIN-93G diet with/without 3% d-allulose for 4 weeks. Their liver samples were then collected and subjected to metabolomics analysis using CE-TOFMS and LC-TOFMS. The results showed that d-allulose induced significant increases in 42 metabolites and significant decreases in 21 metabolites. In particular, we found at the substance levels that d-allulose regulated metabolites involved in the metabolic pathways of fatty acid ß-oxidation, cholesterol, and bile acid. In addition, this study newly showed the possibility that d-allulose alters glucuronic acid/xylulose pathways. In the future, we need more detailed research on the metabolomics profile of other organs related to these pathways for a comprehensive understanding of d-allulose functions.


Assuntos
Açúcares da Dieta/administração & dosagem , Frutose/administração & dosagem , Fígado/metabolismo , Metaboloma , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Ácido Glucurônico/metabolismo , Masculino , Metabolômica , Oxirredução , Ratos , Ratos Wistar , Xilulose/metabolismo
5.
Bioprocess Biosyst Eng ; 44(6): 1021-1032, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33481075

RESUMO

L-Xylulose is a rare ketopentose which inhibits α-glucosidase and is an indicator of hepatitis or liver cirrhosis. This pentose is also a precursor of other rare sugars such as L-xylose, L-ribose or L-lyxose. Recombinant E. coli expressing xylitol-4-dehydrogenase gene of Pantoea ananatis was constructed. A cost-effective culture media were used for L-xylulose production using the recombinant E. coli strain constructed. Response surface methodology was used to optimize these media components for L-xylulose production. A high conversion rate of 96.5% was achieved under an optimized pH and temperature using 20 g/L xylitol, which is the highest among the reports. The recombinant E. coli cells expressing the xdh gene were immobilized in calcium alginate to improve recycling of cells. Effective immobilization was achieved with 2% (w/v) sodium alginate and 3% (w/v) calcium chloride. The immobilized E. coli cells retained good stability and enzyme activity for 9 batches with conversion between 53 and 92% which would be beneficial for economical production of L-xylulose.


Assuntos
Proteínas de Bactérias , D-Xilulose Redutase , Escherichia coli , Microrganismos Geneticamente Modificados , Pantoea/genética , Xilitol/metabolismo , Xilulose/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , D-Xilulose Redutase/biossíntese , D-Xilulose Redutase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Pantoea/enzimologia , Xilitol/genética , Xilulose/genética
6.
Appl Microbiol Biotechnol ; 104(13): 5663-5672, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32372201

RESUMO

Currently, due to the special functions and potential application values, rare sugars become the hot topic in carbohydrate fields. L-Ribulose, an isomer of L-ribose, is an expensive rare ketopentose. As an important precursor for other rare sugars and L-nucleoside analogue synthesis, L-ribulose attracts more and more attention in recent days. Compared with complicated chemical synthesis, the bioconversion method becomes a good alternative approach to L-ribulose production. Generally, the bioconversion of L-ribulose was linked with ribitol, L-arabinose, L-ribose, L-xylulose, and L-arabitol. Herein, an overview of recent advances in the metabolic pathway, chemical synthesis, bioproduction of L-ribulose, and the potential application of L-ribulose is reviewed in detail in this paper. KEY POINTS: 1. L-Ribulose is a rare sugar and the key precursor for L-ribose production. 2. L-Ribulose is the starting material for L-nucleoside derivative synthesis. 3. Chemical synthesis, bioproduction, and applications of L-ribulose are reviewed.


Assuntos
Pentoses/metabolismo , Arabinose/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biocatálise , Biotransformação , Redes e Vias Metabólicas , Pentoses/síntese química , Ribitol/metabolismo , Ribose/metabolismo , Álcoois Açúcares/metabolismo , Xilulose/metabolismo
7.
Nat Biotechnol ; 38(2): 210-216, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844294

RESUMO

The methylotrophic yeast Pichia pastoris is widely used in the manufacture of industrial enzymes and pharmaceuticals. Like most biotechnological production hosts, P. pastoris is heterotrophic and grows on organic feedstocks that have competing uses in the production of food and animal feed. In a step toward more sustainable industrial processes, we describe the conversion of P. pastoris into an autotroph that grows on CO2. By addition of eight heterologous genes and deletion of three native genes, we engineer the peroxisomal methanol-assimilation pathway of P. pastoris into a CO2-fixation pathway resembling the Calvin-Benson-Bassham cycle, the predominant natural CO2-fixation pathway. The resulting strain can grow continuously with CO2 as a sole carbon source at a µmax of 0.008 h-1. The specific growth rate was further improved to 0.018 h-1 by adaptive laboratory evolution. This engineered P. pastoris strain may promote sustainability by sequestering the greenhouse gas CO2, and by avoiding consumption of an organic feedstock with alternative uses in food production.


Assuntos
Processos Autotróficos/fisiologia , Dióxido de Carbono/farmacologia , Processos Heterotróficos/fisiologia , Pichia/crescimento & desenvolvimento , Processos Autotróficos/efeitos dos fármacos , Reatores Biológicos , Isótopos de Carbono , Processos Heterotróficos/efeitos dos fármacos , Engenharia Metabólica , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Fotossíntese/efeitos dos fármacos , Pichia/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/metabolismo , Xilulose/metabolismo
8.
Molecules ; 24(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779240

RESUMO

Euphorbia species are characterized by a net of laticifers producing large amounts of triterpenes. These hydrocarbon-like metabolites can be converted into fuel by the methods of the oil industry. Euphorbia lathyris is easily grown at an industrial scale. In an attempt to increase its triterpene production, the metabolic pathways leading to isoprenoid were investigated by incorporation of 13C labeled glucose and mevalonate and 2H labeled deoxyxylulose as well as by natural abundance isotope ratio GC-MS. Latex triterpenes are exclusively synthesized via the mevalonate (MVA) pathway: this may orient future search for improving the triterpene production in E. lathyris. Phytosterols and their precursors are mainly derived from MVA pathway with a slight contribution of the methylerythritol phosphate (MEP) pathway, whereas phytol is issued from MEP pathway with a minor contribution of the MVA pathway: this is in accordance with the metabolic cross-talk between cytosolic and plastidial compartments in plants. In addition, hopenol B behaved differently from the other latex triterpenes. Its 13C isotope abundance after incorporation of 13C labeled glucose and its natural abundance δ2H signature clearly differed from those of the other latex triterpenes indicating another metabolic origin and suggesting that it may be synthesized by an endophytic fungus.


Assuntos
Butadienos/metabolismo , Eritritol/metabolismo , Euphorbia/metabolismo , Fungos/metabolismo , Hemiterpenos/metabolismo , Redes e Vias Metabólicas/fisiologia , Ácido Mevalônico/metabolismo , Fosfatos/farmacocinética , Glucose/metabolismo , Látex/metabolismo , Fitosteróis/metabolismo , Triterpenos/metabolismo , Xilulose/análogos & derivados , Xilulose/metabolismo
9.
Appl Microbiol Biotechnol ; 103(13): 5435-5446, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31001747

RESUMO

Bioconversion of lignocellulosic biomass into ethanol requires efficient xylose fermentation. Previously, we developed an engineered Saccharomyces cerevisiae strain, named SR8, through rational and inverse metabolic engineering strategies, thereby improving its xylose fermentation and ethanol production. However, its fermentation characteristics have not yet been fully evaluated. In this study, we investigated the xylose fermentation and metabolic profiles for ethanol production in the SR8 strain compared with native Scheffersomyces stipitis. The SR8 strain showed a higher maximum ethanol titer and xylose consumption rate when cultured with a high concentration of xylose, mixed sugars, and under anaerobic conditions than Sch. stipitis. However, its ethanol productivity was less on 40 g/L xylose as the sole carbon source, mainly due to the formation of xylitol and glycerol. Global metabolite profiling indicated different intracellular production rates of xylulose and glycerol-3-phosphate in the two strains. In addition, compared with Sch. stipitis, SR8 had increased abundances of metabolites from sugar metabolism and decreased abundances of metabolites from energy metabolism and free fatty acids. These results provide insights into how to control and balance redox cofactors for the production of fuels and chemicals from xylose by the engineered S. cerevisiae.


Assuntos
Fermentação , Lignina/metabolismo , Metaboloma , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Xilose/metabolismo , Biomassa , Reatores Biológicos , Cromatografia Gasosa , Etanol/metabolismo , Glicerofosfatos/metabolismo , Espectrometria de Massas , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Xilulose/metabolismo
10.
J Ind Microbiol Biotechnol ; 45(11): 939-950, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30159648

RESUMO

The NAD+/NADH ratio and the total NAD(H) play important roles for whole-cell biochemical redox transformations. After the carbon source is exhausted, the degradation of NAD(H) could contribute to a decline in the rate of a desired conversion. In this study, methods to slow the native rate of NAD(H) degradation were examined using whole-cell Escherichia coli with two model oxidative NAD+-dependent biotransformations. A high phosphate concentration (50 mM) was observed to slow NAD(H) degradation. We also constructed E. coli strains with deletions in genes coding several enzymes involved in NAD+ degradation. In shake-flask experiments, the total NAD(H) concentration positively correlated with conversion of xylitol to L-xylulose by xylitol 4-dehydrogenase, and the greatest conversion (80%) was observed using MG1655 nadR nudC mazG/pZE12-xdh/pCS27-nox. Controlled 1-L batch processes comparing E. coli nadR nudC mazG with a wild-type background strain demonstrated a 30% increase in final L-xylulose concentration (5.6 vs. 7.9 g/L) and a 25% increase in conversion (0.53 vs. 0.66 g/g). MG1655 nadR nudC mazG was also examined for the conversion of galactitol to L-tagatose by galactitol 2-dehydrogenase. A batch process using 15 g/L glycerol and 10 g/L galactitol generated over 9.4 g/L L-tagatose, corresponding to 90% conversion and a yield of 0.95 g L-tagatose/g galactitol consumed. The results demonstrate the value of minimizing NAD(H) degradation as a means to improve NAD+-dependent biotransformations.


Assuntos
D-Xilulose Redutase/genética , Escherichia coli/metabolismo , NAD/metabolismo , Fermentação , Glicerol/metabolismo , Microbiologia Industrial , Cinética , Oxirredução , Fosforilação Oxidativa , Xilitol/metabolismo , Xilulose/metabolismo
11.
Sheng Wu Gong Cheng Xue Bao ; 34(7): 1128-1136, 2018 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-30058311

RESUMO

Xylulose as a metabolic intermediate is the precursor of rare sugars, and its unique pattern of biological activity plays an important role in the fields of food, health, medicine and so on. The aim of this study was to design a new pathway for xylulose synthesis from formaldehyde, which is one of the most simple and basic organic substrate. The pathway was comprised of 3 steps: (1) formaldehyde was converted to glycolaldehyde by benzoylformate decarboxylase mutant BFD-M3 (from Pseudomonas putida); (2) formaldehyde and glycolaldehyde were converted to dihydroxyacetone by BFD-M3 as well; (3) glycolaldehyde and dihydroxyacetone were converted to xylulose by transaldolase mutant TalB-F178Y (from Escherichia coli). By adding formaldehyde (5 g/L), BFD-M3 and TalB-F178Y in one pot, xylulose was produced at a conversion rate of 0.4%. Through optimizing the concentration of formaldehyde, the conversion rate of xylulose was increased to 4.6% (20 g/L formaldehyde), which is 11.5 folds higher than the initial value. In order to further improve the xylulose conversion rate, we employed Scaffold Self-Assembly technique to co-immobilize BFD-M3 and TalB-F178Y. Finally, the xylulose conversion rate reached 14.02%. This study provides a new scheme for the biosynthesis of rare sugars.


Assuntos
Carboxiliases/metabolismo , Escherichia coli/enzimologia , Formaldeído/metabolismo , Pseudomonas putida/enzimologia , Xilulose/metabolismo , Proteínas de Bactérias/metabolismo , Enzimas Imobilizadas/metabolismo , Microbiologia Industrial
12.
Biosci Biotechnol Biochem ; 81(8): 1612-1618, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28471330

RESUMO

l-Xylulose reductase (LXR) catalyzes the reduction of l-xylulose to xylitol in the fungal l-arabinose catabolic pathway. LXR (RpLXR) was purified from the pentose-fermenting zygomycetous fungus Rhizomucor pusillus NBRC 4578. The native RpLXR is a homotetramer composed of 29 kDa subunits and preferred NADPH as a coenzyme. The Km values were 8.71 mM for l-xylulose and 3.89 mM for dihydroxyacetone. The lxr3 (Rplxr3) gene encoding RpLXR consists of 792 bp and encodes a putative 263 amino acid protein (Mr = 28,341). The amino acid sequence of RpLXR showed high similarity to 3-oxoacyl-(acyl-carrier-protein) reductase. The Rplxr3 gene was expressed in Escherichia coli and the recombinant RpLXR exhibited properties similar to those of native RpLXR. Transcription of the Rplxr3 gene in R. pusillus NBRC 4578 was induced in the presence of l-arabinose and inhibited in the presence of d-glucose, d-xylose, and d-mannitol, indicating that RpLXR is involved in the l-arabinose catabolic pathway.


Assuntos
Proteínas Fúngicas/metabolismo , Subunidades Proteicas/metabolismo , Rhizomucor/enzimologia , Desidrogenase do Álcool de Açúcar/metabolismo , Xilitol/metabolismo , Xilulose/metabolismo , Arabinose/metabolismo , Clonagem Molecular , Coenzimas/metabolismo , Di-Hidroxiacetona/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Proteínas Fúngicas/genética , Expressão Gênica , Glucose/metabolismo , Cinética , Manitol/metabolismo , NADP/metabolismo , Fases de Leitura Aberta , Filogenia , Multimerização Proteica , Subunidades Proteicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizomucor/química , Rhizomucor/classificação , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/genética , Xilose/metabolismo
13.
J Biosci Bioeng ; 124(4): 386-391, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28527826

RESUMO

Xylose is the second major fermentable sugar present in hard woods and herbs (after d-glucose). Therefore, efficient conversion of xylose to ethanol is essential for the commercialization of lignocellulosic ethanol, which may provide an ideal alternative to fossil fuels in the future. ZLYRHZ7 is a fusant produced by protoplast fusion between two different yeast species, Saccharomyces cerevisiae W5 and Candida shehatae 20335, which is able to utilize xylose to produce ethanol. To improve ethanol production and to quantitatively analyze metabolic pathway in ZLYRHZ7, we used high performance liquid chromatography (HPLC) to assess the utilization rates of xylose, xylitol, and xylulose, and to measure ethanol yields using xylose, xylitol, and xylulose as sole carbon sources. The ethanol yields reached 0.549±0.003, 0.567±0.003 and 0.544±0.005 g/g in 72 h, which indicated that the metabolic pathways from xylose to xylitol, xylitol to xylulose, and xylulose to ethanol, respectively, were functional. In addition, enzyme activity and qRT-PCR analyses showed that the xylose metabolism-related enzymes xylose reductase (XR), xylitol dehydrogenase (XDH), and xylulose kinase (XK) and their respective genes were expressed at significantly higher levels in ZLYRHZ7 than in both S. cerevisiae W5 and C. shehatae 20335 at 24, 48, and 72 h of fermentation. These results clearly show that the fusant ZLYRHZ7, obtained by protoplast fusion of two different yeast species, has the ability to ferment xylose to produce ethanol.


Assuntos
Candida/metabolismo , Redes e Vias Metabólicas , Protoplastos/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Aldeído Redutase/metabolismo , Candida/citologia , D-Xilulose Redutase/metabolismo , Etanol/metabolismo , Etanol/provisão & distribuição , Fermentação , Glucose/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Saccharomyces cerevisiae/citologia , Xilitol/metabolismo , Xilulose/metabolismo
14.
G3 (Bethesda) ; 7(6): 1743-1752, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28404660

RESUMO

Cells grow on a wide range of carbon sources by regulating substrate flow through the metabolic network. Incoming sugar, for example, can be fermented or respired, depending on the carbon identity, cell type, or growth conditions. Despite this genetically-encoded flexibility of carbon metabolism, attempts to exogenously manipulate central carbon flux by rational design have proven difficult, suggesting a robust network structure. To examine this robustness, we characterized the ethanol yield of 411 regulatory and metabolic mutants in budding yeast. The mutants showed little variation in ethanol productivity when grown on glucose or galactose, yet diversity was revealed during growth on xylulose, a rare pentose not widely available in nature. While producing ethanol at high yield, cells grown on xylulose produced ethanol at high yields, yet induced expression of respiratory genes, and were dependent on them. Analysis of mutants that affected ethanol productivity suggested that xylulose fermentation results from metabolic overflow, whereby the flux through glycolysis is higher than the maximal flux that can enter respiration. We suggest that this overflow results from a suboptimal regulatory adjustment of the cells to this unfamiliar carbon source.


Assuntos
Fermentação , Estudos de Associação Genética , Pentoses/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Biomassa , Carbono/metabolismo , Metabolismo Energético/genética , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Essenciais , Genes Fúngicos , Glicólise/genética , Redes e Vias Metabólicas , Mutação , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Estresse Fisiológico , Xilulose/metabolismo
15.
BMC Genomics ; 17: 674, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27552923

RESUMO

BACKGROUND: Cells constantly adapt to changes in their environment. When environment shifts between conditions that were previously encountered during the course of evolution, evolutionary-programmed responses are possible. Cells, however, may also encounter a new environment to which a novel response is required. To characterize the first steps in adaptation to a novel condition, we studied budding yeast growth on xylulose, a sugar that is very rarely found in the wild. RESULTS: We previously reported that growth on xylulose induces the expression of amino acid biosynthesis genes in multiple natural yeast isolates. This induction occurs despite the presence of amino acids in the growth medium and is a unique response to xylulose, not triggered by naturally available carbon sources. Propagating these strains for ~300 generations on xylulose significantly improved their growth rate. Notably, the most significant change in gene expression was the loss of amino acid biosynthesis gene induction. Furthermore, the reduction in amino-acid biosynthesis gene expression on xylulose was tightly correlated with the improvement in growth rate, suggesting that internal depletion of amino-acids presented a major bottleneck limiting growth in xylulose. CONCLUSIONS: We discuss the possible implications of our results for explaining how cells maintain the balance between supply and demand of amino acids during growth in evolutionary 'familiar' vs. 'novel' conditions.


Assuntos
Carbono/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Xilulose/metabolismo , Adaptação Fisiológica , Aminoácidos/biossíntese , Regulação Fúngica da Expressão Gênica , Saccharomycetales/fisiologia
16.
J Biosci Bioeng ; 122(3): 257-62, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26975753

RESUMO

Xylitol has numerous applications in food and pharmaceutical industry, and it can be biosynthesized by microorganisms. In the present study, xdh gene, encoding xylitol dehydrogenase (XDH), was cloned from the genome of Gluconobacter oxydans CGMCC 1.49 and overexpressed in Escherichia coli BL21. Sequence analysis revealed that XDH has a TGXXGXXG NAD(H)-binding motif and a YXXXK active site motif, and belongs to the short-chain dehydrogenase/reductase family. And then, the enzymatic properties and kinetic parameter of purified recombinant XDH were investigated. Subsequently, transformations of xylitol from d-xylulose and d-arabitol, respectively, were studied through mixed culture of resting cells of G. oxydans wild-type strain and recombinant strain BL21-xdh. We obtained 28.80 g/L xylitol by mixed culture from 30 g/L d-xylulose in 28 h. The production was increased by more than three times as compared with that of wild-type strain. Furthermore, 25.10 g/L xylitol was produced by the mixed culture from 30 g/L d-arabitol in 30 h with a yield of 0.837 g/g, and the max volumetric productivity of 0.990 g/L h was obtained at 22 h. These contrast to the fact that wild-type strain G. oxydans only produced 8.10 g/L xylitol in 30 h with a yield of 0.270 g/g. To our knowledge, these values are the highest among the reported yields and productivity efficiencies of xylitol from d-arabitol with engineering strains.


Assuntos
D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Escherichia coli/metabolismo , Gluconobacter oxydans/enzimologia , Engenharia Metabólica , Xilitol/biossíntese , Clonagem Molecular , D-Xilulose Redutase/química , D-Xilulose Redutase/isolamento & purificação , Escherichia coli/genética , Gluconobacter oxydans/genética , Cinética , NAD/metabolismo , Álcoois Açúcares/metabolismo , Xilulose/metabolismo
17.
Appl Microbiol Biotechnol ; 100(2): 535-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26526452

RESUMO

L-Xylulose is an intermediate in certain metabolic pathways and is classified as a rare sugar. It shows important physiological effects such as acting as an inhibitor of α-glucosidase and decreasing blood glucose, and it can be employed to produce other significant rare sugars, such as L-ribose and L-xylose which contribute to the production of antiviral drugs. Chemical synthesis of L-xylulose was performed, but it is difficult and low yielding. The biotransformation from xylitol to L-xylulose by xylitol 4-dehydrogenase was studied intensively. This review describes the occurrence of L-xylulose in certain metabolic pathways, its bioproduction, and application potential.


Assuntos
Biotecnologia/métodos , D-Xilulose Redutase/metabolismo , Redes e Vias Metabólicas , Xilulose/metabolismo , Antivirais , Biotecnologia/tendências , Biotransformação , Glucose/metabolismo , Ribose/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Álcoois Açúcares/metabolismo , Xilitol/metabolismo , Xilose/metabolismo , Xilulose/síntese química , Xilulose/farmacologia , alfa-Glucosidases/metabolismo
18.
ACS Synth Biol ; 5(7): 607-18, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26186096

RESUMO

A synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1. Alternatively, both glycolaldehyde and DHAP can be converted to glycolic acid with a theoretical yield that is 20% higher than for the exclusive production of this acid via the glyoxylate shunt. Simultaneous expression of xylulose-1 kinase and X1P aldolase activities, provided by human ketohexokinase-C and human aldolase-B, respectively, restored growth of a (d)-xylulose-5-kinase mutant on xylose. This strain produced ethylene glycol as the major metabolic endproduct. Metabolic engineering provided strains that assimilated the entire C2 fraction into the central metabolism or that produced 4.3 g/L glycolic acid at a molar yield of 0.9 in shake flasks.


Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Xilose/metabolismo , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Fosfato de Di-Hidroxiacetona/genética , Fosfato de Di-Hidroxiacetona/metabolismo , Enzimas/genética , Enzimas/metabolismo , Escherichia coli/genética , Glicolatos/metabolismo , Mutação , Pentosefosfatos/genética , Pentosefosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Xilose/genética , Xilulose/metabolismo
19.
Am J Physiol Renal Physiol ; 309(9): F755-63, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26311112

RESUMO

Renal depletion of myo-inositol (MI) is associated with the pathogenesis of diabetic nephropathy in animal models, but the underlying mechanisms involved are unclear. We hypothesized that MI depletion was due to changes in inositol metabolism and therefore examined the expression of genes regulating de novo biosynthesis, reabsorption, and catabolism of MI. We also extended the analyses from diabetes mellitus to animal models of dietary-induced obesity and hypertension. We found that renal MI depletion was pervasive across these three distinct disease states in the relative order: hypertension (-51%)>diabetes mellitus (-35%)>dietary-induced obesity (-19%). In 4-wk diabetic kidneys and in kidneys derived from insulin-resistant and hypertensive rats, MI depletion was correlated with activity of the MI-degrading enzyme myo-inositol oxygenase (MIOX). By contrast, there was decreased MIOX expression in 8-wk diabetic kidneys. Immunohistochemistry localized the MI-degrading pathway comprising MIOX and the glucuronate-xylulose (GX) pathway to the proximal tubules within the renal cortex. These findings indicate that MI depletion could reflect increased catabolism through MIOX and the GX pathway and implicate a common pathological mechanism contributing to renal oxidative stress in metabolic disease.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Hipertensão/metabolismo , Inositol/metabolismo , Túbulos Renais Proximais/metabolismo , Obesidade/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Hipertensão/complicações , Hipertensão/genética , Inositol/deficiência , Inositol Oxigenase/genética , Inositol Oxigenase/metabolismo , Resistência à Insulina , Túbulos Renais Proximais/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/genética , Proteínas/genética , Proteínas/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Wistar , Xilulose/genética , Xilulose/metabolismo
20.
Mol Microbiol ; 98(3): 553-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26194109

RESUMO

Bacterial degradation of xylose is sequentially mediated by two enzymes - an isomerase (XutA) and a xylulokinase (XutB) - with xylulose as an intermediate. Pseudomonas fluorescens SBW25, though capable of growth on xylose as a sole carbon source, encodes only one degradative enzyme XutA at the xylose utilization (xut) locus. Here, using site-directed mutagenesis and transcriptional assays, we have identified two functional xylulokinase-encoding genes (xutB1 and xutB2) and further show that expression of xutB1 is specifically induced by xylose. Surprisingly, xylose-induced xutB1 expression is mediated by the mannitol-responsive regulator MtlR, using xylulose rather than xylose as the direct inducer. In contrast, expression of the xutA operon is regulated by XutR - a transcriptional activator of the AraC family - in a xylose-, xylulose- and ribose-dependent manner. Detailed genetic and biochemical analyses of XutR, including DNase I footprinting assays, suggest an unconventional model of XutR regulation that does not involve DNA-looping, a mechanism typically found for AraC-type regulators from enteric bacteria. XutR functions as a dimer and recognizes two inverted repeat sequences, but binding to one half site is weak thus requiring an inducer molecule such as xylose for activation.


Assuntos
Manitol/metabolismo , Pentoses/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Óperon , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ribose/metabolismo , Xilose/metabolismo , Xilulose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA